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SYNOPSIS 

The equations of one-dimensional heat transfer with chemical reactions with isothermal 
initial conditions and constant wall temperature are solved approximately for all types of 
kinetic models. The general solution is valid for low exothermal peaks and it is characterized 
explicitly by two dimensionless parameters. The first parameter is the ratio between the 
time scale for heat conduction and that for the chemical reaction; the second parameter is 
the ratio between the processing temperature and the adiabatic temperature rise. The 
number of additional parameters depends on the particular choice of kinetic model. The 
maximum temperature in the solution always occur at  the center line and its magnitude 
is proportional to the maximum rate of reaction. For a second-order autocatalytic kinetic 
model, closed form results can be obtained. The solution is in this case characterized by 
two additional dimensionless parameters. The analytical solution agrees excellently with 
numerical solutions for small exothermal temperature peaks ( < 10% of the adiabatic tem- 
perature rise), but the qualitative agreement is very good also for cases with significant 
exothermal peaks. The general solution can be used also for the case when the kinetic 
model is unknown and only experimental DSC results are available. 0 1994 John Wiley & 
Sons, Inc. 

INTRODUCTION 

The quality of fiber-reinforced composite parts made 
with thermoset resins depends to a large extent on 
the curing process. The temperature in the laminate 
must be kept as uniform as possible during cure to 
avoid residual stresses after cooling. Moreover, 
thermal degradation of the matrix or voids from gas 
formed by chemical reactions may occur if the max- 
imum temperature in the laminate becomes too high. 
This may sometimes be in conflict with the demand 
for short cycle times, which often necessitates high 
processing temperatures that may give strong tem- 
perature gradients. 

Nonuniform and high temperature usually occurs 
when the laminate is thick in some sense. A strict 
definition of a thick laminate is difficult to make 
since it depends both on the reactivity of the ther- 
moset at the processing temperature and the thermal 
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properties of the laminate (heat conductivity, spe- 
cific heat capacity, and density). One way to esti- 
mate when a laminate can be considered “thick” is 
to compute the ratio between the time scale for the 
reaction and the time scale for heat conduction. 
Adiabatic behavior with high temperatures can be 
expected when this ratio is much less than unity.’ 

Several kinetic models have been proposed for 
use in the simulation of the cure process in ther- 
mosetting materials. The most complex models are 
based on a semimechanistic  approach.'^^ However, 
these models are usually quite impractical for en- 
gineering purposes due to the difficulty in obtaining 
the model parameters. An alternative to the fun- 
damental models are empirical or phenomenological 
models formulated in terms of the degree of cure (or 
the degree of conversion), which are much easier to 
apply in a practical case. The degree of cure can be 
defined as4 

(1 )  
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where qr is the heat production per unit mass by 
chemical reactions; p, the density of the composite, 
and Htot, the total amount of heat that is released 
per unit mass if the reaction is allowed to progress 
until completion. The simplest model of this kind 
is the so-called n th-order kinetic model, 'y5 which 
describes how the rate of reaction depends on the 
degree of cure and the temperature: 

d a  
- =  K ( 1 -  a ) n  
d t  

where K is a temperature-dependent parameter 
usually described by an Arrhenius expression. This 
model can be slightly refined to take account of dif- 
fusion controlled phenomena6 by substituting a 
temperature-dependent function amax inside the pa- 
rentheses: 

( 3 )  

Both models ( 2 )  and ( 3 )  are unable to model the 
maximum in the rate of reaction for intermediate 
values of a that is observed for autocatalytic ma- 
terials. A model that can describe autocatalytic be- 
havior was proposed by Kamal and Sourour 7-9: 

d a  - _  - ( K ,  + K2arn)(1 - 
dt 

where K, and Kz are temperature-dependent pa- 
rameters. An alternative form of (4) with K,  = 0 
has been found to work well for unsaturated poly- 
esters." Measurements in our own lab show that 
(4) with K, = 0 works reasonably well also for epoxy 
and vinylester. The model in (4) can be refined in 
a similar way to the nth-order model to take account 
of diffusion-controlled behavior at the later stages 
of the reaction'' to yield 

where a,,, is a linear function of temperature. 
In the present study, an explicit solution is pre- 

sented for temperature and chemical reactions 
characterized by the autocatalytic model in ( 4 )  with 
m + n = 2 (second-order reaction) and with K1 
= o  

which is sufficient to model the important features 
of many real materials ( see Fig. 1 ) . The purpose of 
the present article was to investigate the influence 
on the temperature and the cure time for different 
process parameters. The simple model in ( 6 )  exhib- 
its most of the important features of the more refined 
models. The main limitation is the poor description 
of the ultimate degree of cure a t  different temper- 
atures, but this has no practical importance for the 
exothermal temperature prediction and for the time 
to, say, 50% conversion. The dashed lines in Figure 
1 are computed from a best fit of the model in ( 5 )  
and the solid lines are from a best fit to the model 
in ( 6 ) .  Both models agree qualitatively well with 
the data, but the model in (5) agrees more closely 
quantitatively with the data, which is not so sur- 
prising since a larger number of fitting parameters 
usually gives a better fit. However, it is debatable 
whether the more complex model in (5) will give a 
better prediction of a real processing situation than 
will the other models, since the model parameters 
are difficult to determine with high accuracy (par- 
ticularly K , )  and since it is very difficult to ensure 
that the processing conditions are exactly as in the 
theory. 

The boundary and initial conditions for the en- 
ergy equation has been investigated for different 
composite manufacturing processes by Castro.12 The 
analysis of chemical reactions and the mold-filling 
process can be decoupled for cases where the mold 
filling time is much shorter than the gel time of the 
material. Castro also showed that the mold-filling 
process can be considered isothermal at the mold 
wall temperature if the time scale for heat conduc- 
tion is much smaller than the time scale for the re- 
action. In the case of liquid composite molding pro- 
cesses such as structural reaction injection molding 
(SRIM) and resin transfer molding (RTM), the 
mold temperature is usually close to the initial tem- 
perature of the resin. In summary, this makes it rea- 
sonable to assume, in many processing situations, 
that the resin temperature is isothermal and at the 
mold temperature when the cure process starts. 

For the case with high-speed liquid composite 
molding at higher temperatures and with minimized 
cure times, the case is not so clear and more work 
is needed to determine if an analysis with isothermal 
initial conditions at the mold temperature is feasible. 

In this article, a general solution valid for small 
exotherm temperatures is developed. The general 
solution is specialized to the kinetic model in (6)  so 
that an explicit analytical solution is obtained. The 
analytical solution is compared to a numerical so- 
lution of the full nonlinear problem and is found to 
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Figure 1 Comparison of the ability of two different kinetic models to describe the cure 
process for an epoxy resin (experimental data from Dusi et al?) . The solid line is a best 
fit to a simple second-order autocatalytic model and the dashed line is a fit to the model 
proposed by Kenny et  al.” with Kl = 0. 

give good results for small exotherm temperatures. 
For higher exotherm temperature peaks, the model 
still gives qualitatively correct results. The big ad- 
vantage with the analytical solution is that it gives 
a detailed “map” over the dependence on the prob- 
lem parameters in contrast to the pointwise infor- 
mation that usually results from a numerical solu- 
tion. 

GENERAL SOLUTION FOR SMALL 
EXOTHERMAL PEAK TEMPERATURES 

The following analysis is valid for a geometry in 
which the thickness is small compared with the 
width so that heat conduction is essentially one- 
dimensional. Moreover, the material properties are 
assumed to be independent of the temperature and 
the degree of cure. The equation for one-dimensional 
heat conduction with chemical reactions in a ma- 
terial with constant properties is l3 

aT a2T 
PC - = x 2 + qr at ax ( 7 )  

where p is the density; c ,  the specific heat capacity; 
A, the heat conductivity; and qr,  the heat production 
by chemical reactions. An equivalent expression for 
the heat production associated with the reactions 
can be derived from the definition of a in ( 1 ) : 

The rate of reaction d a l d t  is a t  this stage assumed 
to be described by the general expression 

(9)  

In the next section, a particular model will be 
used in place of the right-hand side of ( 9 ) ,  but the 
analysis can be taken several steps forward without 
any further assumptions about the kinetic model. 
The boundary and initial conditions for the problem 
are 
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; t = O  
T = To 

a = &  

The time scale for this problem depends primarily 
on the reactivity of the material and a suitable time 
scale can be derived from the reaction with adiabatic 
conditions for a small sample of material (small 
enough to be isothermal). For this case, the energy 
equation can be integrated directly to 

Substitution of T from (12) in the kinetic model 
Eq. (9)  yields the reaction rate at different degrees 
of cure. The particular value of the degree of cure, 
denoted u1 in the following, that is chosen to com- 
pute the characteristic rate of reaction should ideally 
be chosen so that da /d t  is a t  its maximum. However, 
for an order of magnitude estimate, any value of a 
in the interior of the interval [0, 11 is acceptable. 
Thus, the characteristic value of the rate of reaction 
is 

The time scale T for a significant change of the de- 
gree of cure is the inverse of the characteristic rate 
of reaction: 

The characteristic length scale of the problem is 
the thickness of the laminate L and a characteristic 
temperature is obtained from the adiabatic temper- 
ature rise ATad: 

The maximum change in temperature with the tem- 
perature normalized with ATad will be of order unity 
or smaller. However, higher temperature changes 
are possible if the boundary temperature is higher 
than T0.14.15 The degree of cure, a, needs no scaling 
since it is already dimensionless and of order unity 
by definition. Dimensionless variables are obtained 
by scaling of the original variables: 

t t* = - 
7 

X v = E  
rn 

Substitution of these variables in the governing 
equations yields 

where the dimensionless kinetic model F ( u ,  0 )  is 
defined by 

The dimensionless initial and boundary conditions 
are 

v = o  
8 = 8,; 

L = l  

; t * = O  (23) I 8 = 80 

a = &  

The two dimensionless parameters Q and 80 are de- 
fined as 

A7 
Q = -  

pcL2 

The dimensionless kinetic model eq. (21) con- 
tains additional dimensionless parameters that de- 
pend on the particular model in question. The first 
dimensionless parameter Q can be interpreted as the 
ratio of the time scale for the reaction to the time 
scale for heat conduction. It is sometimes called a 
diffusion Deborah number.” The second parameter 
8, is the nondimensional initial temperature. 

The dimensionless equations for the cure process 
[ (19) and ( 2 0 ) ]  can be solved for the special case 
with close to isothermal conditions, which is ob- 
tained when the exothermal peak temperature is 
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small. In this case, the temperature variation is so 
small that the reaction rate is essentially the same 
as it is under isothermal conditions. This means that 
the energy equation and the kinetic equation become 
decoupled and can be solved in sequence. The kinetic 
equation can be integrated to 

where G is a time-dependent function that also de- 
pends on the parameter B0. It is difficult to find an- 
alytical expressions for G for most of the kinetic 
models presented in the Introduction. However, it 
is always possible to perform this step for any sen- 
sible kinetic model, although in some cases it is nec- 
essary to resort to a numerical solution. The solution 
for a yields a time-dependent solution for da/dt in- 
dependent of the temperature variation around &: 

where Fo is given by 

Notice that the solution in (26) and (27) can also 
be obtained directly from an isothermal DSC ex- 
periment. The DSC instrument can then be said to 
act as an analog computer. The solution for dcr/dt 
in (27) is now substituted in place of the source 
term in (19). The general solution to (19) with the 
time-dependent energy source Fo(t*) from (27) is 
then13 

4 "  
0 - 0 0 = -  2 cos[(2n + l ) d q  - 1/2)] 

n=O ( 2 n  + 1) 

The solution is valid for all values of Q and all types 
of time-dependent source terms Fo ( t * ) . The only 
assumption is that the resulting exotherm temper- 
ature peak must be so small that the kinetic and the 
energy equation are effectively uncoupled. The so- 
lution in (29) can be considerably simplified if the 
integral in the sum is solved approximately with La- 
place's methodI6: 

The result in (30) can be simplified even further 
since the sum can be evaluated explicitly to 

The approximation leading to (31 ) is strictly valid 
if Q( 2n + 1 ) 21r is very large, which is true if 9 is of 
order unity. The error that is made by approximating 
the integral in each term in (29) appears to be very 
small. However, the errors are added in an infinite 
sum and there is no easy way to estimate the influ- 
ence of this. It is possible to arrive at  the result in 
(31) by a more direct approach. The energy eq. ( 19) 
can be integrated directly to yield the result in (31) 
if it is assumed that Qd20/dr]2 9 d0/dt. Notice that 
this is not necessarily the same as to assume that Q 
9 1 and that the limiting value of Q depends on the 
exact choice of aY1 in the scaling. No serious attempt 
will be made at investigating the problem in detail 
here. However, in the light of the numerical solutions 
later in this article, the approximation seems to be 
justified for 9 of order unity. 

Thus, the instantaneous maximum temperature 
A0 in the spatial domain 0 5 r] I 1 will always occur 
a t  the center line ( r ]  = $ )  and its value is 

The maximum of the temperature at the center line 
will therefore occur a t  the maximum in the reaction 
rate and with the notation above it is 

(33) 

where Fo [ max denotes the maximum value of Fo. 

ANALYTlCAL SOLUTION FOR A SECOND- 
ORDER AUTOCATALYTIC KINETIC MODEL 

The general solution in (31 ) can be expressed in 
closed form for special choices of the kinetic model. 
In this section, a solution is presented for the second- 
order autocatalytic model in (6). The time scale for 
the adiabatic reaction is computed from the reaction 
rate a t  (Y = 0.5 [cf. (13)l: 



158 GEBART 

Notice that the time scale is independent of the ex- 
ponent n when a1 = 0.5. The nondimensional form 
of (6)  can after some manipulation be written as 

where two additional dimensionless parameters ( r 
and n )  appear. The new parameter r is defined by 

and it can be interpreted as the ratio between the 
time scale for an adiabatic reaction and an additional 
reaction time scale defined by A -* . 

The values of the dimensionless parameters for 
a 3 mm-thick laminate with glass fibers (Vi = 0.5) 
and vinylester (BASF Palatal A-430) and a 5 mm- 
thick laminate with carbon fibers (Vi = 0.6) and 
epoxy (Fiberite 976) are presented as an example 
in Table I. The kinetic parameters for the resins 
have been determined from DSC results with a non- 
linear least-squares-fit procedure. The experimental 
data for the vinylester are from isothermal DSC 
measurements in our laboratory and the data for 
the epoxy are from Dusi et al.9 The material prop- 
erties of the laminate are shown in Table I. 

The dimensionless parameters are of about the 
same magnitude in the two examples in Table I, but, 
in general, they can vary within wide limits de- 
pending on the thermal and kinetic properties of 
the material in question. However, in most cases of 
practical interest ( i.e., without high exothermal 
temperatures), the parameters R and 80 can be ex- 
pected to be of order unity. 

Specialization of (35) to the case with low exo- 
thermal peak temperatures ( 0  N 0,) yields 

d a  - _  - C l a 2 - n ( l  - a)"  
dt* 

where the constant C, is given by 

Equation (37)  can be rewritten as 

-- ' a  ( a )" = C,dt* 
a2 1 - a  

(37) 

which can be integrated to 

(I/& - l ) l - "  
= Clt* ( 1 / &  - l ) l -n  - 

1 - n  1 - n  

f o r n f  1 (40) 

Table I 
Parameters for a 3 mm-Thick Glass Fiber-Vinylester 
Laminate with an Initial Temperature of 35°C 
and a 5-mm-Thick Carbon Fiber-Epoxy Laminate 
with an Initial Temperature of 150°C 

Material Properties and the Resulting Dimensionless 

Parameter Glass + Vinylester Carbon + Epoxy Dimension 

L 
TO 
Porosity 
P 
C 

x 
E 
A 

Htd 
A Tad 

n 
r 
$0 

n 

7 

3 

0.5 
308 (35°C) 

1890 
1140 

0.4 
4.3. lo4 
3.7 - 104 

1.8 - lo5 
1.5 

158 
65 
1.3 
6-105 
1.9 

5 

0.4 
423 (150°C) 

1580 
970 

0.7 
6.9. lo4 
1.2 lo5 

2.1 - lo5 
1.6 

216 
188 

3.3 

1.9 
5.5 - 105 

a The thermal conductivity of the composite is computed from the Nielsen rule- 
of-mixture." 
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In( '/' - '1 = Clt* for n = 1 (41) 
1/a - 1 

The special case with n exactly equal to unity (41) 
is of little interest and will in the following be left 
out of the discussion. (The solution below can easily 
be repeated also for the case n = 1.) Equation (40) 
can be solved for a: 

and this solution is plotted in Figure 2 for different 
values of E ( loP3, and 0.1). Notice that 
a depends on the initial value E ,  but that this de- 
pendence becomes negligible for sufficiently small 
values of e when n > 1 ( see Fig. 2 ) . The dependence 
on E is a result of the kinetic model that predicts the 
zero reaction rate a t  a = 0 and makes it necessary 
to set the initial value of a to nonzero values to 
obtain nontrivial solutions. Rearrangement of (42 ) 
shows that the dependence on e is equal to a time 
shift in the time dependence in a: 

1 
a =  (43) 14- [ ( n  - l ) C l ( t *  - 

where the time shift 7* is given by 

Hence, the shape of the curve a( t* ) is indepen- 
dent of E ,  although the time at  which a attains dif- 
ferent values depends on e.  This is also evident in 
Figure 2 where the horizontal distance between pairs 
of curves is constant. The solution for a exhibits 
fundamentally different behavior for n > 1 and n 
< 1, respectively. For n < 1, the reaction progresses 
to completion ( a  = 1 ) for finite times: 

(1/& - l)l-n 

G(1- n )  
f o r n < l  (45) t,*m,1 = 

For n > 1, the degree of cure will be less than unity 
for all finite times and the time shift in the solution 
(7* ) approaches zero asymptotically as e approaches 
zero. 

The corresponding solution for da/dt evaluated 
from (42) or (37)  is 

(44) 

1 

t+ 
Figure 2 Analytical solution for the degree of cure a vs. dimensionless time for four 
different values of c. Values for the dimensionless parameters are 52 = 1.3, I? = 6 .  lo5, and 
80 = 1.9. 
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d a  
dt* 

below the target value that was used to compute the 
lines. 

The time at which the maximum in d a / d t *  occurs 
is 

and the corresponding value of a is 

Notice that the time for the maximum t&:kak is prac- 
tically independent of E for small values of E and n 
> 1. 

Substitution of d a / d t *  from (46) in (32) makes 
it possible to evaluate the instantaneous center-line 
temperature. The solution for the maximum value 
of the center-line temperature A0* is obtained at 
the maximum of d a / d t  and it takes a remarkably 
simple form after some algebraic manipulation: 

where m + n = 2. Notice that there is no dependence 
either explicit or implicit on E .  In a practical situa- 
tion, it is often of interest to keep the maximum 
temperature below a "target temperature" to min- 
imize the residual stresses in the laminate and to 
avoid degradation of the matrix material. It is in- 
teresting to see how the solution in (49) can be used 
to predict a suitable processing temperature that will 
give an acceptable peak temperature for different 
values of Q and r. To do this, the left-hand side in 
(49) is set to the target temperature rise A$' and the 
resulting equation for 60 is solved 

1 In z' 
2 nnmm 

8QA0 

eo = - 

In 
(50) 

The optimum processing condition map computed 
from (50) with A0' = 0.01 is shown in Figure 3 for 
three different values of r. Combinations of O0 and 
Q below the lines will result in a peak temperature 

COMPARISON WITH NUMERICAL 
SOLUTIONS 

The analytical solution in the previous section is 
valid for small exotherm peak temperatures. The 
exact value of the exotherm temperature for which 
the solution ceases to be valid is unknown. To in- 
vestigate this matter in more detail, a series of nu- 
merical solutions were computed for various com- 
binations of the dimensionless parameters. The 
governing equations were integrated with an implicit 
time-stepping scheme with full nonlinear iteration 
on each time l e ~ e l . ' ~ ~ ' ~  The spatial discretization was 
50 control volumes across the thickness of the lam- 
inate and the initial time step was set to 0.01. The 
program also has an automatic time-step strategy 
that tries to keep the maximum change in a between 
time steps less than 0.001. All computations were 
performed in single precision, but this caused no 
significant problem except for a few cases at the very 
lowest reaction rates where round-off errors appear 
to influence the result. The initial value of the degree 
of cure c was and the value of n was 4 ( m  = f) 
in all cases. 

Figures 4 and 5 show the temporal variation of 
temperature and degree of cure for three different 
values of Q (0.01,0.1, and 1). The temperature plots 
in Figure 4 show the gradual transition to adiabatic 
behavior when D decreases. The adiabatic solution 
in ( 12) can be rewritten to show that in the adiabatic 
case 

A0 = a (51) 

The temperature variation for Q = 0.01 is clearly 
adiabatic, which can be seen in Figure 6 where the 
temperature and the corresponding degree of cure 
are plotted vs. time. Notice the very good agreement 
with (51 ) for (Y < 0.8. 

The numerical and analytical solutions are com- 
pared in Figures 7 and 8 for the case with D = 1, 
= lo5, and O0 = 2.5. The agreement between the 
solutions is very good with a maximum relative error 
in the temperature of about 9%. 

The scaling of the peak temperature with the di- 
mensionless parameters r and 60 is compared to the 
analytical solution in Figures 9 and 10 and the 
agreement is found to be excellent for the parameter 
range investigated. 

The peak temperature dependence on Q is inves- 
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Figure 3 Stability map for three different values of I?. The target value for the exotherm 
peak AO’ is 0.01. Values of il and Bo above the lines will give a higher exotherm peak than 
the target value. 
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values of R (I? = lo5 and 8, = 2.5). 

Numerical results for the center-line temperature variation for three different 
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ofD ( r  = 105andBo = 2.5). 

Numerical results for the center-line degree of cure for three different values 

t* 
Figure 6 
( r = lo5 and Bo = 2.5).  Theoretically, AB* = (Y for an adiabatic cure process. 

Temperature increase AB* and degree of cure a at the center line for D = 0.01 



- Analytical I - - . Numerical 1 

t* 

A6* 

Figure 7 
with Q = 1, r = lo5, and @,, = 2.5. 

Comparison of the numerical to the analytical solution for the degree of cure 
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Figure 8 
temperature increase with Q = 1, I’ = lo5, and Oo = 2.5. 

Comparison of the numerical to the analytical solution for the center-line 
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Figure 9 
perature increase at  the center line with fi = 1 and go = 1.9 vs. F. 

Comparison between numerical and analytical results for the maximum tem- 
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Figure 10 
and r = 6. lo5 vs. 1/&. 

Comparison between numerical and analytical results for In A%* with 51 = 1 
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tigated in Figure 11 where the results for a wide 
range of Q values and two different combinations of 
8,, and r are shown. As can be expected, the agree- 
ment with the theoretical solution is good at  Q 
around unity, but it is interesting to notice that the 
qualitative agreement is good in the whole range of 
D values all the way up to adiabatic conditions (peak 
temperature = 1 ) . 

The analytical solution has also been investigated 
with respect to the time to peak temperature in (47 ) 
(see Fig. 12). The agreement with numerical results 
is very good also for this aspect of the analytical 
solution. 

The peak temperature from 192 different runs 
with various combinations of dimensionless param- 
eters is plotted in Figure 13. The abscissa in Figure 
13 is the analytical solution for the maximum peak 
temperature in (49). The theoretical solution (solid 
line) is also plotted in Figure 13 for comparison. 
The scatter a t  low values of the temperature peak 
are probably a result of round-off errors since this 
is the region where the approximation should be 
best. At higher values of the temperature peak, the 
deviation is a result of nonlinear behavior. Notice 
that the agreement with the analytical solution is 
excellent at low exothermal peak values and that it 
is reasonably good at values of A8 around 0.1. The 

results for Q < 0.5 in Figure 13 can be seen to deviate 
slightly from the theoretical solution at intermediate 
values of the exotherm peak. Some of this deviation 
probably comes from the approximation of the in- 
tegral in (29), which becomes less good when D < 1. 

SUMMARY AND CONCLUSIONS 

A general solution for simultaneous heat transfer 
and chemical reactions in a thermosetting material 
has been found in the limit of small exothermal 
temperature peaks. The temperature solution shows 
that the maximum temperature always occurs at the 
center line for diffusion Deborah numbers ( Q )  of 
order unity or larger. The peak temperature is pro- 
portional to the peak reaction rate and it occurs a t  
the same time that the peak reaction rate occurs. 

The kinetic equation is integrated explicitly for 
the special case with a second-order autocatalytic 
kinetic model and the result is substituted in the 
general solution to yield a closed-form solution for 
the temperature. The analytical solution is compared 
to numerical results and it is found to be valid with 
good accuracy as long as the exothermal temperature 
peak is smaller than about 10% of the adiabatic 
temperature peak. However, also for higher tem- 
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Figure 12 
at which the temperature peak occurs with Q = 1 and @,, = 1.9 vs. r. 

Comparison between the numerical and the analytical solution for the time 
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Figure 13 Numerical solutions for a wide range of parameter combinations (0.001 < Q 
< 30,lO < r < 3.6 - lo'', and 1.5 < 6, < 8.0) vs. the theoretical solution for the temperature 
peak. The analytical solution is plotted for comparison purposes. 
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perature peaks, the qualitative behavior of the an- 
alytical solution is similar to the numerical solution. 

The general temperature solution above can be 
used without a kinetic model since it is valid for all 
types of time-dependent heat sources. All that is 
needed to compute the temperature is the time-de- 
pendent heat production by the chemical reactions 
at the processing temperature. Hence, the processing 
temperature and the formulation of the reacting 
material can be optimized, with regard to processing 
time and maximum temperatures, utilizing isother- 
mal DSC measurements. If the computed peak tem- 
perature is larger than the desired value, new DSC 
measurements at lower temperatures are made until 
the peak temperature is acceptable. 

The most critical parameter for the characteris- 
tics of the cure process is the diffusion Deborah 
number ( Q ) .  A prerequisite for high exothermal 
temperatures appears to be that this parameter is 
less than unity. Both Q and the dimensionless pro- 
cessing temperature & are fundamental parameters 
in a sense since they do not depend on the particular 
choice of kinetic model. When a particular kinetic 
model is introduced, additional dimensionless pa- 
rameters will appear. The cure behavior for the au- 
tocatalytic model above depends less on these ad- 
ditional parameters (I' and rz) than on Q and O0. It 
is difficult to draw similar conclusions that are valid 
for general kinetic models. However, it seems likely 
that the additional parameters in the general case 
will be less critical than D and 60 since most models 
behave qualitatively in the same way as the simple 
model above. 

The isothermal initial condition and the constant 
wall temperature employed in the present analysis 
is an approximation of the conditions in real pro- 
cessing situations. The approximation is quite good 
for a metal mold with water heating but very poor 
for an unheated composite mold with low thermal 
diffusivity. Probably the most important deviation 
from the assumptions in the analysis is that the wall 
temperature can be time-dependent. Hence, an in- 
teresting extension of the present analysis would be 
to include this feature in the model. 
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universal gas constant (8.314 [ J/mol 
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ratio of two reaction time scales 
initial degree of cure 
dimensionless spatial coordinate 
dimensionless temperature 
dimensionless processing temperature 
center-line temperature rise 
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heat conductivity [ W /m K J 
density [ kg/m3] 
characteristic time scale for adiabatic 

reactions [ s ]  
diffusion Deborah number 
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